All BGRI Abstracts

Displaying 81 - 90 of 415 records | 9 of 42 pages

Identifing candidate genes corresponding to Yr6 in wheat stripe rust by resequencing a population acquired from selfing an isola

BGRI 2018 Poster Abstract
Gangming Zhan State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University
Yuan Tian, Yan Meng, Hengbo Ma, Lili Huang, Zhensheng Kang

Stripe rust, caused by Puccinia striiformis Westend f.sp. tritici, is currently one of the most prevalent and damaging disease on wheat. Up to now, some genes in wheat which are resistant to wheat stripe rust have been cloned, but little is known about the corresponding avirulence gene according to the gene-for-gene hypothesis. A population containing 118 progeny isolates population acquired by selfing an isolate, PL17-7, with virulence to Yr26 was derived. Seventy-two progeny isolates were different in genotype depending on 92 simple sequence repeat (SSR) markers. The progeny population segregated for avirulence to Yr6 at one locus (3 avirulent :1 virulent ratio). The parental isolate and 72 of 118 progeny isolates were resequenced to find candidate avirulence genes corresponding to Yr6. Overall, 7.6 million reads per sample were obtained and mapped to the draft genome of a Chinese Pst isolate CY32. The median depth of coverage was 63.6 fold. For each isolate, between 97.6% and 98.1% of the sequence reads were mapped to the race CY32 genome, which covered between 87.3% and 95.4% of the reference genome bases. An average of 97357 single nucleotide polymorphisms (SNP) per isolate was found, which covered 8.1% of the reference genome. Different SNPs and Indels were found when isolates virulent and avirulent to wheat cultivar containing Yr6 were grouped into two groups. Though screening discrepant SNP and indel in these two groups, candidate avirulence genes corresponding to Yr6 may be found.

Tags:

Achieving triple rust resistance in wheat through combination of phenomic and genomic tools

BGRI 2018 Poster Abstract
Urmil Bansal University of Sydney Plant Breeding Institute
Naeela Qureshi, Vallence Nsaiyera, Pakeer Kandiah, Mesfin Gesesse, Mandeep Randhawa, Mumta Chhetri, Bosco Chenayek, James Kolmer, Miroslav Valarik, Zaroslav Dolezel, Beat Keller, Matthew Hayden, Justin Faris, Harbans Bariana, Vanessa Wells

Dr. Norman Borlaug stated that rust never sleeps and this enables rust pathogens to produce new strains capable of putting rust resistance genes to rest. These pathogens continue to pose threats to global wheat production. Wheat breeders have made significant progress to control rust outbreaks using conventional selection technologies; however, some critical shifts in pathogen populations have let them down. Rapid evolution in molecular marker technologies in the last 15 years and refinement of phenomic facilities have expedited the process of discovery and characterisation of rust resistance genes to underpin the development and validation of markers closely linked with genetically diverse sources of resistance. A high proportion of the formally named rust resistance genes were characterized in the 21st century and markers closely linked with these genes have been developed and validated. The marker tagged sources of resistance to three rust diseases have equipped the wheat breeding community with tools to deploy combinations of all stage and adult plant resistance genes in future wheat cultivars. The question that whether we have enough resistance genes discovered to compete against the ever-awake rust pathogens. In our opinion, we cannot be complacent and discovery needs to continue to ensure food security. This presentation will discuss the role of advances in phenomic and genomic technologies to achieve durable rust control in wheat.

Tags:

Genetic characterization of wheat for adult plant response against rust infestation under water deficit conditions

BGRI 2018 Poster Abstract
Rahil Shahzad Ayub Agricultural Research Institute, Faisalabad
Shakra Jamil

Different biotic and abiotic stresses are hampering wheat yield across different geographic regions. Among biotic stresses, wheat rusts are principal cause of yield reduction. Whereas among abiotic stresses, drought is the principle cause of reduction in growth and lowering yield potential. So developing rust resistance and drought tolerance in wheat germplasm is needed, which requires assessment of genetic potential of current cultivars against these stresses to identify variation among existing germplasm. Screening of genotypes under naturally prevailing races of rust species is the better and inexpensive approach. In the present study 65 genotypes including five checks (AARI-11, Chakwal- 50, Aas- 11, Morocco and Galaxy-13) were evaluated for adult plant response to wheat rusts and water deficit conditions. Experimental material was planted in four blocks each having new entries along with repetition of five checks in augmented design. Data was recorded on morphological traits including plant height, peduncle length, spike length, productive tillers per meter, flag leaf area, number of spikelet per spike, grains per spike, single head weight, 1000 grain weight, days to maturity and grain yield per acre. Significant variation was observed among genotypes for all the studied traits. On the basis of performance G39 and G36 were better than commercial drought check Chakwal-50 in almost all the traits. However rust screening under natural rust infestation revealed that although Morocco showed susceptible (S) response yet only six genotypes were susceptible to yellow rust whereas all others were resistant. In case of leaf rust 29 were completely resistance, 25 were moderately resistant, seven were moderately susceptible and only four were completely susceptible to currently active races of leaf rust. However, in the case of stem rust, 61 genotypes showed complete resistance to stem rust, two showed moderately resistance and two were moderately susceptible. Information obtained from this study would be favorable for breeding rust resistant and drought tolerant cultivars.

Tags:

Stem rust resistance in durum wheat

BGRI 2018 Poster Abstract
Pablo Olivera University of Minnesota
Ayele Badebo, Worku Bulbula, Matthew Rouse, Yue Jin

Our research objective is to identify new resistance genes in durum wheat that are effective against TTKSK and other significant stem rust pathogen races that could be utilized in durum breeding. We characterized 8,000 accessions for stem rust response in the field (Debre Zeit, Ethiopia, and St. Paul, MN). Accessions with resistant to moderately resistant responses in multiple field evaluations were evaluated at the seedling stage for resistance to races TTKSK, TRTTF, TTTTF, JRCQC, TKTTF, and six representative U.S. races. We identified 438 durum accessions resistant to moderately resistant in all field evaluations. Among the field-resistant accessions, 273 were resistant to all races used in seedling evaluations. Accessions susceptible at the seedling stage are being evaluated for the presence of adult plant resistance genes. The highest frequencies of resistant lines include landraces from East and North Africa (Ethiopia and Egypt) and advanced breeding lines and cultivars from North America (Mexico and USA). DNA markers will be performed to identify the presence of durum stem rust resistance genes, including Sr13, Sr8155B1, Sr11, and Sr8a. Nineteen resistant accessions were selected to investigate the genetics of TTKSK and TRTTF resistance. Results from evaluating F2 and F2:3 generations from biparental crosses revealed that resistance to race TTKSK was conferred mostly by one or two genes with dominant and recessive actions. Additional resistance genes were identified when populations were evaluated against race TRTTF. A bulk segregant analysis approach is being used to map the resistance in selected lines using the 90K SNP platform.

Tags:

Development of bread wheat cultivars for resistance to stem rust for cultivation in north zone of Iran

BGRI 2018 Poster Abstract
Manoochehr Khodarahmi Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
Kamal Shahbazi, Jabbar Alt Jafarby, Mohammad Sadegh Khavarinejad, Farzad Afshari, Farshad Bakhtiar, Habibollah Soghi

In this project to obtain resistant wheat breeding lines/cultivars to stem rust disease, new cultivars and lines of the north breeding program were evaluated in greenhouse with races collected in 2014 from northern regions of Iran, Moghan and Gorgan. Artificial inoculation in greenhouse indicated none of the races had virulence on Sr11, Sr13, Sr24, Sr25, Sr26, Sr27, Sr29, Sr31, Sr32, Sr33, Sr37, Sr39, Sr40, and SrTmp. In order to evaluate seedling resistance, 143 wheat cultivars and new lines under greenhouse conditions were inoculated with four isolates of stem rust in four separate experiments in a randomized complete block design with three replications. Evaluation of the northern germplasm under greenhouse conditions showed that some of the genotypes were resistant against all four isolates. The resistance of some of these new lines was also confirmed in Kenya. Regarding other desirable agronomic characteristics, some of these lines will be introduced as new cultivars in the northern region of Iran.

Tags:

Occurrence of the Warrior Race of Wheat Stripe Rust (Puccinia striiformis f. sp. tritici) in Egypt, 2015

BGRI 2018 Poster Abstract
Atef Shahin Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Egypt.
Wasif Youssif, Mohamed Hasan

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, [Pst] is a widespread and damaging disease of wheat (Triticum aestivum L.), causing significant losses in yield and quality. During the 2015, eight stripe rust physiological races were identified in greenhouse tests i.e. 0E0, 6E4, 70E20, 128E28, 134E244, 143E245, 250E174, and 450E214. Race 0E0 was the most common and avirulent race, and races 143E245, and 450E214 had high virulence on most of tested Yr resistance gene wheat lines. In the same season, an unusual stripe rust infection occurred in spring wheat at Sakha region in Egypt. Some of the most important commercial cultivars such as (Misr 2, Giza 168 and Sakha 61), known as resistant to the previously characterized races of Pst in Egypt have become susceptible under field conditions. Infections of stripe rust was observed on some wheat lines with Yr genes previously known to be resistant, such as Yr1, Yr17 and Yr32, in a yellow-rust trap nursery at Sakha (30.601400? N, 31.510383? E), northern Egypt. Independent race analysis of collected samples from four governorates i.e. Kafrelsheikh, Al-Sharqia, Dakahleia and Damietta at Sakha Agricultural Research Station in Kafrelsheikh confirmed the detection of a new Pst race in Egypt. Aggressive races with virulence to Yr27 were detected on differentials with Yr27 (Yr27/6*Avocet S), and (Ciano 97) during the 2012 in Egypt. In addition, the Warrior race (virulent on: Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr25, Yr32, and YrSp) was observed in the 2015 crop season, which indicated continued changes in the Pst the population. In Europe, the Warrior race first identified in 2011 in the United Kingdom, has caused significant change in yellow rust susceptibility of several varieties of both wheat and triticale. In a conclusion, some of wheat cultivars, known to be resistant, were shifted to susceptible due to these new races.

Tags:

Identification of resistant sources against rusts of wheat

BGRI 2018 Poster Abstract
Muhammad Fayyaz Crop Diseases Research Institute, National Agricultural Research Center, Park Road Islamabad, Pakistan
Anjum Munir, Khalil Ahmed Khanzad, Javed Iqbal Mirza, Shahzad Asad, Atiq ur Rehman Rattu, Muahmmad Imtiaz

Evaluation of candidate lines to develop resistant varieties at multiplications in Pakistan is a regular activity which has been successfully done for many years. This approach assists in generation of future resistant cultivars around appropriate genes combinations thereby providing durable resistance outputs for wheat productivity. This year, National Uniform Wheat Yield Trial (NUWYT) comprised of 60 candidate lines. Among these 15 lines were also present in the last years NUWYT. The two years data revealed that there was only one line V-12066 resistant to all three rusts during the two consecutive seasons 2015-16 and 2016-17. Four candidate lines NR-487, V-122557, PR-115 and NRL-1123 were found resistant to yellow and leaf rust during 2015-16 and 2016-17. A candidate line DN-111 was found resistant to leaf and stem rust. There were three lines NW-1-8183-8, NW-5-20-1 and MSH which were found resistant to leaf rust only during two consecutive seasons. Similarly, two candidate lines V-122559 and QS-3 were found resistant to stem rust only, while one line NR-443 was resistant to yellow rust only. The present study provide the screening and evaluation system of Pakistan for promoting and releasing the resistant wheat varieties.

Tags:

Isolation of durable wheat stem rust resistance gene Sr26 and enhancement of its deployment

BGRI 2018 Poster Abstract
Jianping Zhang CSIRO Agriculture and Food, Australia
Timothy Hewitt, Peng Zhang, Zacharias A. Pretorius, Narayana Upadhyaya, Rohit Mago, Sambasivam Periyannan, Xiuying Kong, Burkhard Steuernagel, Brande H. Wulff, Evans S. Lagudah

Multiple rust resistance gene combinations are considered as a practical solution for providing durable rust resistance and preventing resistance breakdown arising from single gene deployment. The stem rust resistance locus Sr26, originally derived from Thinopyrum ponticum and introgressed into wheat as a chromosome translocation, is one of the very few genes conferring durable resistance for almost 40 years to all known races of stem rust, including the highly virulent stem rust race Ug99 (TTKSK) and its derivatives (Dundas et al. 2015). To understand the underlying mechanisms of its unusual long-term effectiveness and to explore allelic diversity in different Th. ponticum accessions for other functional alleles that may offer new sources of resistance, we used comparative genomics and gene capture techniques (Resistance gene enrichment sequencing, RenSeq) as complementary strategies for isolating the target gene (Steuernage et al. 2016). Sr26 region was first mapped using NB-LRR (Nucleotide-binding site and leucine-rich repeat) sequences from the orthologous gene members located on the long arm of chromosome 6D from Aegilops tauschii (the D-genome donor of wheat) reference genome. Subsequently, we revealed a cluster of NB-LRR sequences located at the distal end of the Th. ponticum introgression segment that were absent in the smallest interstitial Sr26 deletion mutant. Therefore, we substantially narrowed down the genetic interval for Sr26. In addition to this approach, we subjected the mutant population to RenSeq pipeline. A candidate gene of Sr26 has been successfully identified to be a NBS-LRR type resistance gene. Validation of the gene candidate by complementation studies is currently in progress. In order to enhance durable resistance, genetic stocks of Sr26 from different backgrounds as well as a panel of Sr26-APR (Adult Plant Resistance) gene combinations have been generated to further investigate the resistance response of Sr26 in combination with different multi-pathogen APR genes.

Tags:

How to adapt durum wheat when the environment tries everything to kill it

BGRI 2018 Poster Abstract
Filippo Maria Bassi ICARDA, Rabat
Khaoula El Hassouni, Priyanka Gupta, Hafssa Kabbaj, Meryam Zaim, Amadou Tidiane Sall, Bouchra Belkadi, Ayed Al-Abdallat, Ahmed Amri, Rodomiro Ortiz, Michael Baum

Durum wheat is the tenth most important crop in the world, but its cultivation is mostly limited to harsh, arid, and heat prone marginal lands. Breeding for tolerance to these conditions is often considered the most strategic approach to ensure adaptation, especially when paired with best agronomical practices. The word 'adaptation' summarizes all the research efforts conducted to identify the many traits controlling the mechanisms for withstanding or escaping the traceries of the environment. It can be summarized as "GGE vs E". The durum wheat breeding program of ICARDA deploys targeted phenotyping methods in combination with genomic scans to dissect these 'adaptive' traits into simple loci. These loci can then be pyramided via a combination of international field testing, markers assisted selection, genetically-driven crossing schemes, and genomic selection to derive climate-ready cultivars. Here, several examples of this approach are presented and their implications for 'adaptation' are discussed.

Tags:

Large scale wheat stem rust outbreaks in Western Siberia / Northern Kazakhstan in 2015-2017

BGRI 2018 Poster Abstract
Vladimir Shamanin Omsk State Agricultural University, Omsk, Russia
Elena Salina, Yuriy Zelenskiy, Alma Kokhmetova, Mehran Patpour, Mogens Hovmøller, Pablo Olivera, Les Szabo, Yue Jin, Marcel Meyer, Chris Gilligan, Matthew Hort, Dave Hodson, Alexey Morgunov

Short season, high latitude spring wheat is grown on 7 million ha in Western Siberia and 10 million ha in Northern Kazakhstan. Despite relatively low wheat yields (1.5 t/ha), the region is extremely important for regional and global food security. Leaf rust dominates, occurring three years out of five, especially in favorable years with higher rainfall. Since 2010, stem rust has been observed at an increasing number of sites. The first large-scale stem rust outbreak occurred in 2015 and affected about 0.5-1 million ha in Omsk, Western Siberia. In 2016, 2 million ha were affected in the Omsk and Altay regions, while 1 million ha in the Kostanay and Northern Kazakhstan regions were affected in 2017. Estimated yield losses reached 25-35% each year. Factors associated with the outbreaks included: higher rainfall in late June and July; cultivation of susceptible varieties; and an increased area planted to winter wheat, which serves as a source of inoculum. Sampling and race analysis revealed a diverse pathogen population, indicative of a sexual recombination. A total of 51 races were identified from 31 samples taken in 2015 and 2016. All races were avirulent on Sr31. The majority of varieties released and cultivated in the region are susceptible to stem rust and require replacing. A recent study of 150 local resistant varieties and breeding lines indicated that the genetic basis of resistance was limited to Sr25, Sr31, Sr36, Sr6Ai, Sr6Ai#2, and additional unknown major genes. Adult-plant resistance to stem rust was observed in less than 20% of the germplasm. The potential impact of these large stem rust outbreaks on other wheat growing regions is being investigated by analyzing spore wind dispersal patterns. Further research is required to understand and mitigate the sudden appearance of stem rust as a disease of economic importance.
Study at Omsk State Agrarian University was supported by the Russian Science Foundation (project No. 16-16-10005).

Tags:

Pages