All BGRI Abstracts

Displaying 61 - 70 of 415 records | 7 of 42 pages

Genetics of yield components for drought tolerant wheat (Triticum aestivum L.) genotypes

BGRI 2018 Poster Abstract
Sharmin Ashraf University of Agriculture, faisalabad
ihsan khaliq

Drought tolerance is a polygenic trait, with a complicated phenotype, often confused by plant phenology. Breeding for water stress is more complex since there are many types of abiotic stresses, such as drought, heat and salt. High yielding wheat genotypes viz., Miraj-06, 9452, 9469, 9272, 9277, CMS-127 and three testers Chakwal-50,
Kohistan-97 and Aas-11 were crossed in line ? tester mating design. Seed obtained from crosses was evaluated in field conditions for various agronomic traits under drought conditions. Recorded data were subjected to analysis of variance to determine the genetic variability. The data were analyzed statistically and combining ability
studies were tested using line ? tester analysis to find the relationship between different traits of wheat. High significant differences were observed among the lines and testers for yield related traits under stress conditions.

The female line 9452 proved to be best line on the basis of mean performance of traits under water stress. In case of testers, the male parent variety Chakwal-50 retained its performance in maximum number of traits closely followed by Aas-11. The cross combination 9272 ? Aas-11 proved best for attaining highest mean for most of
traits. In case of GCA effects line 9277 and tester Aas-11 proved best. The cross combinations 9277 ? Chakwal-50, 9452 ? Kohistan-97 exhibited highest SCA effects. The superior genotypes and crosses can be combined to develop new promising and improved varieties under water stress conditions.

Tags:

Analysis of the resistance to Zymoseptoria tritici in a Tunisian durum wheat landraces

BGRI 2018 Poster Abstract
Sonia Mihed Hamza-Ben Youssef National Institute of Agronomy of Tunisia, INAT
Maroua Ouaja, Hanen Sbei, Bochra Bahri

Septoria tritici blotch (STB) caused by the fungal pathogen Mycosphaerella graminicola (anamorph: Zymoseptoria tritici) is one of the most important foliar diseases of durum wheat (Triticum turgidum ssp. durum) in Tunisia. It attacks plants from seedling stages to maturity causing serious yield losses. Breeding for resistance to STB in durum wheat can provide an effective, economic and environmentally-safe strategy to reduce yield losses. However, this is hampered by lack of sources of resistance. In this context, a collection of 420 accessions of durum wheat from the National Bank of Gene (BNG) were evaluated for resistance to two virulent isolates of Z. tritici, namely TunBz-1 (across two environments) and TM220 (across one environment) under field conditions at three different development stages. The evaluation scale was ranged from 0% (immune plant) to 100% (100% of leave covered with symptoms). Three effects were studied on the collection: environmental effect E1-E2 (years 2016-2017), isolate effect I1-I2 (TunBz-1 and TM220) and physiological stage effect S1-S2 (seedling and adult). Results highlighted different sources of resistance between both seedling and adult stages. Moreover, 51 and 67 accessions have differential response to the two studied isolates respectively in seedling and adult stage. Furthermore, the Venn diagram has identified 23 accessions in the collection that are resistant to both isolates at both stages and that resistance was stable across environments. These accessions are located mainly in the center of Tunisia. Resistance to isolate TunBz-1 is expressed since seedling stage and there is stability of this resistance throughout the environments. The center of Tunisia seems to be a diversity center that includes different sources of resistance to STB. This collection could be the subject of a genome-wide association study (GWAS) as it presents different types of STB resistance categories that can be targeted via SNPs.

Tags:

A new stem rust resistance locus detected in wheat variety Yalta

BGRI 2018 Poster Abstract
Davinder Singh University of Sydney
Robert,Park, , , , , , , , , , , , , , , , , , , , , , , , , , , ,

To monitor evolution and pathogenic variability of wheat stem rust pathogen (Puccina graminis f. sp. tritici) in Australia, the Australian Cereal Rust Control program regularly conducts national annual surveys. Recently, we detected a new pathotype 34-1,2,5,7 (culture # 661) virulent on stem rust resistance genes Sr5, Sr6, Sr7b, Sr9g, Sr11, Sr15 and Sr17. Although virulent on Sr11, this pathotype produced a low infection type (IT 22+C/X) on the Sr11-differential genotype Yalta, indicating that Yalta carries an uncharacterised resistance (SrY) in addition to Sr11. To characterize SrY, we screened a RIL population Yalta/W2691 (104 lines) with two pathotypes: 21-0 (avirulent on Sr11 or AA) and the newly identified 34-1,2,5,7 (virulent on Sr11 but avirulent on SrY or BB). Yalta produced low infection types, "1C" and "22+C/X" with pathotypes 21-0 and 34-1,2,5,7, respectively, whereas W2691 was susceptible to both pathotypes. The population segregated for AA/aa (35 Res: 69 Sus) and BB/bb (36 Res: 68 Sus) loci with pathotypes 21-0 and 34-1,2,5,7, respectively. The observed segregation (AA/aa and BB/bb) however failed to fit with predicted single gene 1:1 model (P<0.05) with both pathotypes. Joint segregation analysis (AA/aa vs BB/bb) also significantly deviated (P<0.01) from 1:1:1:1 (AABB:AAbb:aaBB:aabb) genetic model. It appears that population is skewed towards susceptibility in each case either by chance or differential gametic transmission as reported previously in progenies derived from crosses involving variety Yalta. The segregation pattern (AABB and aabb) with two pathotypes was, however, highly coupled apart from 13 lines, of which, 6 lines (AAbb) were susceptible with 21-0 and resistant with 34-1,2,5,7, and 7 lines (aaBB) resistant with 21-0 and susceptible with 34-1,2,5,7, showing that the two loci are linked (?2 linkage = 76.9; P<0.001) and located very close to each other. If that is the case, it may imply that SrY is common in wheats carrying Sr11. Cultivar Charter has been used in India to differentiate pathotypes virulent for Sr11, suggesting that Charter also carries a second stem rust locus (SrC) possibly corresponding with SrY. Further studies and mapping work are underway to determine the genetic relationship between SrY, SrC and Sr11.

Tags:

Genetics of stem rust resistance in South African winter wheat varieties

BGRI 2018 Poster Abstract
Martin Chemonges University of the Free State
Liezel Herselman, Botma Visser, Willem Boshoff, Zacharias Pretorius

Most South African winter wheat varieties display all stage resistance (ASR) to stem rust caused by Puccinia graminis f. sp. tritici (Pgt). To study inheritance, four resistant varieties were crossed to a susceptible parent (Line 37) and F2 populations were phenotyped at the seedling stage with stem rust race PTKST (Ug99 lineage). Populations derived from varieties Koonap, Komati, Limpopo and SST 387 segregated in a 3:1 ratio, indicating that a single, dominant gene confers resistance in each population. Assessment of F2 seedlings of four intercrosses between these varieties failed to deliver susceptible segregants therefore suggesting that they carry the same resistance gene. Genotyping of F2 plants with microsatellite markers produced consistent linkage of resistance with markers on chromosome 6DS. Experiments are underway to determine the relationship between resistance in the four winter wheat varieties and resistance genes Sr42, SrCad and SrTmp, all located on 6DS. Current evidence shows that ASR in the South African winter wheat varieties Koonap, Komati, Limpopo and SST 387 is based on a single gene and thus vulnerable to pathogenic adaptation in Pgt.

Tags:

Improvement of drought and salt tolerance of wheat genotypes under field conditions by high throughput precision phenotyping

BGRI 2018 Poster Abstract
Magdi Abdelhamid National Research Centre
Ibrahim El-Metwally

Food crisis is a major concern in Egypt, where drought and saline soils are ubiquitous. Wheat is a staple food in Egypt, which is only moderately tolerant to drought and salinity. Due to its rapidly increasing demand, there is an urgent need in Egypt to enhance wheat yields under drought and salinity conditions. Improving salinity or/and drought tolerance of genotypes is inhibited by a lack of efficient evaluation methods. High throughput precision phenotyping provides an innovative technology to screen for enhanced salt or drought tolerance from a large of number of genotypes under field conditions and can have immediate value to plant breeding. Therefore, we have tested several wheat phenotyping techniques i.e., canopy temperature (CT), spectral reflectance (SR), chlorophyll content (SPAD value), crop ground cover, relative water content (RWC), Water soluble carbohydrates (WSC), leaf area index (LAI), crop morphological traits, and grain wheat yield and yield components. We documented strong correlation/linear regression/polynomial regression between the wheat phenotyping techniques and in-season biomass/grain yield. It could be concluded that the documented results confirmed that several landraces were selected as drought/salinity tolerant out of 762 wheat landraces wheat were screened. Using high throughput precision phenotyping could provide an innovative technology and can have immediate value to plant breeding.

Tags:

Impact of extension activities on the adoption of new wheat varieties

BGRI 2018 Poster Abstract
Joel Ransom North Dakota State University
Andrew Friskop

The rapid adoption of new varieties of wheat with disease resistance is critical to mitigating losses due to new diseases or disease races, even when only part of an integrated disease management program may include fungicides. There are numerous sources of information that can be used by farmers in North Dakota when selecting varieties with specific disease resistance as well as other traits. Formal surveys were conducted to determine the role of extension activities on the adoption of Fusarium Head Blight (FHB) control practices especially on the use of new varieties with FHB resistance. This disease became a regular and devastating problem of small grains in eastern North Dakotas in the 1990s. In a survey specific to North Dakota conducted in 2010, most respondents indicated that information from the extension service was their main source of information for FHB control with varietal selection their primary means of control. Extension publications, accessed through the internet or as hard copy obtained from an extension office or at an extension meeting were the most important sources; fewer respondents obtain their information from extension meetings and field days. A survey conducted in 2014 found that private sources (consultants and input suppliers) are becoming more important sources of information for FHB control and varietal selection, perhaps because the disease has become better understood and most new varieties have some level of FHB resistance. In durum wheat, where there are few varieties available from the private sector, extension publications were found to be the main source of information used for selecting new varieties. Data from these surveys show the importance of a strong and active extension program in ensuring that new varieties with resistance to new diseases/disease races are readily adopted.

Tags:

Heat stress mediated changes in morpho-physiological and quality parameters of wheat

BGRI 2018 Poster Abstract
Mehvish Makhdoom Wheat Research Institute, Ayub Agricultural Research Institute,Faisalabad,Pakistan
Javed Ahmad, Ghulam Mehboob Subhani, Makhdoom Hussain

Crops vary greatly in their tolerance to heat stress. Among the major staples wheat is considered the most sensitive. Wheat production is severely threatened in many countries by heat stress especially during reproductive and grain-filling stages. For recent decades due to change in global climate, the qualitative and quantitative yield of wheat is affected. To meet the demand of food requirements of ever increasing population there is a need to develop varieties which can tolerate heat stress for which screening of germplasm is pre requisite. In the present study, 30 genotypes were used to check their response to heat stress using randomized complete block design following two different sowing dates. Analysis of variance and multivariate analysis were used for finding important traits and best genotypes in relation to heat stress. High broad sense heritability coupled with high genetic advance was measured for gluten and zeleny indicating the presence of additive gene effect for these traits. Principal component analysis showed that under heat stress conditions genotype 11, 14, 15, 20 and 30 performed well. These genotypes were also found resistant to yellow and brown rust and can be used in further breeding programs for development of heat tolerant, rust resistant genotypes.

Tags:

Three years of the Precision Wheat Phenotyping Platform for diseases in Uruguay: current status and future prospects

BGRI 2018 Poster Abstract
Gustavo Azzimonti Instituto Nacional de Tecnologia Agropecuaria (INIA), Estaci?n La Estanzuela, Ruta 50, Km 11, Colonia, Uruguay
Vanesa,Domeniguini, N?stor, Gonz?lez, Richard, Garcia, Carolina, Saint-Pierre, Pawan, Singh, Mart?n, Quincke, Silvia, Pereyra, Silvia, Germ?n, , , , , , , , , , , , , ,

Since 2014 CGIAR-WHEAT Program has promoted the establishment of a network of field-based Precision Wheat Phenotyping Platforms (PWPP) to expand the existing collaborations between CIMMYT, ICARDA and National Agricultural Research System partners. The main goals are improving the quality of data collected and shared among institutions to enhance and accelerate the international wheat breeding, and promote synergism with the private sector and nongovernmental organizations. In 2015, the PWPP-Uruguay was established to test genotypes for multiple diseases: leaf rust, Fusarium head blight and Septoria tritici blotch. These diseases are phenotyped each year in separate field trials artificially inoculated with pathogen isolates identified as representatives of the pathogen regional population. Wheat material is sowed in plots with susceptible checks every 50 entries. Disease severity and other variables related to the disease development are measured using standard international scales at dates when the expression of plant resistance is optimal. In the first three years of the platform, more than 1500 genotypes were screened per year. These materials had diverse origins (more than eight institutions, public and private, from eight countries) and diverse types: from recent commercialized to ancient cultivars, advanced lines, International CIMMYT nurseries, mapping populations or panels. Highly resistant genotypes to multiple diseases could be selected. At the present time, we are developing and adopting advanced phenotyping methods, combining remote sensing and image analysis, and exploring their adaptation to breeding constraints. Also, extension activities as internships, training courses and student projects are being developed. Major future prospects are the enhancement of data and germplasm exchange between platform partners and the PWPP network and the involvement in collaborative phenotyping/genotyping breeding projects.

Tags:

On-farm seed production through Edget farmers' seed multiplier and marketing cooperative union: Practices and lessons from Basic

BGRI 2018 Poster Abstract
Fikre Handoro Hawassa Agriculture Research Centre
Agdew Bekele, Waga Mazengia, Shimekt Maru

Shortage of seed of rust resistant varieties is a challenge of small holder farmers in wheat production. To successfully address this issue, one of the essential elements in wheat production system is farmer's access to quality seed of improved varieties. This paper presents the experience of on-farm basic and pre-basic seed production of newly released rust resistant wheat varieties. For the first time in the country, On-Farm basic and pre-basic seed production of wheat varieties was carried out in two districts/woredas (Silti and Soddo) of two specific locations (Loke faka and Wacho) where the Edget Farmers' Seed Multiplier and Marketing Union was licensed to produce some crop varieties (cereals and pulse), beginning in the 2011/2012 cropping season. Model farmers from primary cooperatives were selected based on the past experience they had with the union in producing certified seed. Selected farmers and relevant experts were trained on how earh seed of wheat is produced. Accordingly seed multiplication of four wheat varieties was conducted with frequent monitoring and evaluation at the course of multiplication.
As a result sufficient and quality basic seed of newly released wheat varieties was produced on-farm in both Loke and Wacho locations for own utilization and seed market. The result of the experiment revealed that it was possible to multiply quality wheat seed provided that partnership (with GOs and/or NGOs) is well-built and cooperative farmers do farm management practices as per the recommendations. On-farm seed production can be sustainable if the strong partnership exists among stakeholders, and wheat seed growers are given premium prices for their seed which is supported by the legal frame work that encourages the seed production of early generations. More importantly, the result of this experiment has a useful implication on government policies and strategies and government institutions' practice on farm early seed generation production and marketing.

Tags:

Status and strategies for averting the threat of yellow rust (Puccinia striiformis Westend.) in North Indian states

BGRI 2018 Poster Abstract
D. P. Singh ICAR-Indian Institute of Wheat and Barley Research
Sudheer Kumar, P.L. Kashyap, Gyanendra Pratap Singh

Yellow rust of wheat caused by Puccinia striiformis Westend. is one of the important diseases of wheat in India. In north Indian states it spreads quite fast due to favourable temperature and moisture prevailing in these states during major part of crop growth (November-mid March). In spite of favourable weather, proactive survey and surveillance and advisories issued in time resulted successful management of yellow rust in India during past four decades. Even large scale cultivation of varieties like HD 2967 in about 12 million ha past two years did not result any losses. Three spots of initial foci near foot hills in Punjab have been identified and are monitored regularly. Any sign of yellow rust is controlled effectively with the foliar sprays of fungicides like propiconazole @ 0.1%. Use of mobiles phones and internet services is regularly done for transfer of information on wheat crop health and suggestions for proper management. Strategic planting and sowing of wheat in which newly released high yielding yellow rust varieties helped in reducing the yellow rust inculum build up. Regular monitoring of wheat health via weather forecasts take place after every fortnight from December to March. During 2016-17 crop season, yellow rust was effectively managed and its occurrence was delayed in Punjab, Haryana and Uttarakhand states. Two new pathotypes, 110S 119 and 110S 84 developed recently were used for evaluation of entries of wheat yield trials during 2016-17 at hot spot locations. The new varieties in pipe line of identification and release are tested against yellow rust. The most critical period for yellow rust management remained from December till mid February.

Tags:

Pages