All BGRI Abstracts

Displaying 61 - 70 of 415 records | 7 of 42 pages

Incorporation of rust resistance (especially stem rust race Ug99) from rice to wheat through Wheat ? rice crossing

BGRI 2018 Poster Abstract
Javed Ahmad Wheat Research Institute, AARI, Faisalabad, Pakistan
Ghulam Mahboob Subhani, Makhdoom Hussain, Mehvish Makhdoom

Rust is the single largest factor limiting wheat production in Pakistan. According to the FAO reports, countries in the predicted immediate pathway of Ug99 grow more than 65 million hectares of wheat, accounting for about 25% of global wheat harvest.
Rice, a member of the same family (Poaceae) is not attacked by any rusts. Wheat, an allo-hexaploid is responsive for wide crossing. It has previously been successfully crossed with its several wild relatives and different other crop species like corn, pearl millet etc. Based on the above facts wheat ? wild rice crossing has been attempted to incorporate rust resistance from rice to wheat. Successful crosses were made under in-vitro conditions. Surviving plantlets developed from these crosses were assayed for any genetic material introgressed from rice. Different cytological / molecular techniques were used to detect the introgression (Squash preparations from root tips, FISH, GISH, SSR etc.). Two hundred and fifty primers specific to rice chromatin were used to look for the introgression of rice chromatin into hybrids. Seven primers amplified the fragments in hybrids indicating the possible introgression of rice chromatin in wheat x rice hybrids but in-situ hybridization didn't confirm that introgression. So further testing of these hybrids is needed.


Population dynamics of wheat stem rust fungus in Indian subcontinent during 2009-2015

BGRI 2018 Poster Abstract
Subhash Bhardwaj ICAR-IIWBR, Regional Station, Flowerdale,Shimla 171002 H.P. India
Pramod Prasad, OmPrakash Gangwar, Hanif Khan, Siddanna Savadi, Subodh Kumar

Stem rust (Puccinia graminis tritici) (Pgt) epidemics have been reported from many wheat growing areas of the world. Stem rust races with virulence to Sr31 (Ug99 type races),are a threat to wheat producing African countries. Currently 11 different variants of the Ug99 lineage have been reported from different countries. Despite no report of Ug99 variants from any of the South Asian countries, the efforts are in place to counter the possible introduction of virulent wheat stem rust races. Stem rust surveillance has been a major component of the rust resistance breeding worldwide. This study reports virulence phenotypes and functional SSR marker based genotypes among stem rust collections in the Indian subcontinent during 2009 to 2015.
Wheat stem rust samples were analyzed on differential sets used for pathotype identification in India. Twelve pathotypes of Pgt were identified in a total of 574 samples analyzed. Pgt pathotypes 40A and 11 were identified in 36% and 32% of the samples, respectively. The stem rust resistance genes Sr7a, Sr26, Sr27, Sr31, Sr32, Sr33, Sr39, Sr40, Sr43, SrTmp and SrTt3 were found to confer resistance to the field population identified during this period. The analysis of SSR marker genotypes data revealed a high degree of variability in the Pgt population, with mean gene diversity and polymorphic information content (PIC) values of 0.56 and 0.50, respectively. STRUCTURE software divided the Pgt populations in to four subpopulations with some admixtures. The FST values of pairs of subpopulations ranged from 0.35 to 0.93 which indicated that the four sub-populations were significantly differentiated. The analysis of molecular variance (AMOVA) determined that 16%, 69% and 15% of the totl variation was between population, among and within individuals, respectively. The information generated here could be a useful guide for resistance breeding and gene deployment programmes for saving South Asian wheat from stem rust.


Characterization of a diverse South American wheat panel to identify new leaf rust and stem rust resistance genes

BGRI 2018 Poster Abstract
Paula Silva INIA Uruguay and Dep. Plant Pathology, Kansas State University, US
Pierina Clerici, Richard Garcia, Fernando Pereira, Noelia Perez, Martin Quincke, Silvia German

Leaf rust (LR) and stem rust (SR) are threats to global wheat production and new races frequently overcome resistance genes deployed in wheat cultivars. Identification of new sources of resistance is a major goal for many pre-breeding programs. The objective of this study was to investigate the genetic basis of resistance to LR and SR in a diverse South American wheat panel. Molecular markers for known resistance genes and GBS were used to dissect genetic components. The wheat panel of 122 lines was characterized under field conditions at La Estanzuela Research Station, Uruguay, for disease severity (DS) to LR (2014 and 2015) and SR (2015), and LTN (leaf tip necrosis). Final DS for LR ranged between 0 and 95%, with mean values of 40% (2014) and 46% (2015). For SR, final DS ranged between 0 and 50%, with a mean value of 5%. The frequencies of positive diagnostic resistance markers among accessions were 20.5% for Lr34/Sr57, 6.6% for Lr68, 3.3% for Sr2/Lr27, 23% for Sr31/Lr26, 20.5% for Sr24/Lr24, 9.4% for Sr25/Lr19, and 0% for Sr39/Lr35. Of all the LR/SR resistance genes, only the effect of Lr68 was significant when predicting LR DS. Seventeen lines were identified with combinations of two genes, but no combination conferred a significantly improved level of resistance. Preliminary GWAS analysis for LR response on a subset of 86 lines revealed several QTLs, with a major QTL explained by Lr68. Lines with good levels of resistance to LR and SR, high expression of LTN, and absence of markers for the studied resistance genes were identified, indicating that there are other genes involved in resistance. Future research involving the testing of additional molecular markers for other known resistance genes, and a deeper GWAS analysis, will provide further information about the resistance genes present in this wheat panel.


Epidemics of yellow and stem rust in Southern Italy 2016-2017

BGRI 2018 Poster Abstract
Mehran Patpour Global Rust Reference Center (GRRC), Aarhus University, Denmark
Mogens Støvring Hovmøller, Jens Grønbech Hansen, Annemarie Fejer Justesen, Tine Thach, Julian Rodriguez-Algab, Dave Hodson, Biagio Randazzo

In 2016, severe epidemics of yellow (stripe) rust were observed on durum and bread wheat in European regions where the diseases in the past were insignificant or absent. Stem rust was also observed at epidemic levels for the first time in more than 50 years in Europe. On Sicily, both yellow and stem rust caused epidemics on cultivated durum and bread wheat and numerous breeding lines. In 2017, surveys in farmer fields and trial monitoring were carried out in Southern Italy during April-June. A total of 61 farmer fields and 9 experimental plots were inspected and rust samples collected. Despite unfavourable weather conditions for rust development, stem rust, yellow rust and leaf rust were detected on 86%, 50% and 14% of the surveyed sites, respectively. The surveys on Sicily covered approximately 70% of the durum wheat area, and data uploaded and visualised on the Wheat Rust Toolbox. On mainland Italy and Sardinia, yellow rust was observed, and sampled from nine fields in Sardinia and two in Puglia, whereas stem rust was detected and sampled in experimental plots in Sicily, Sardinia, Puglia, Lazio and Emilia Romagna. A total of 94 samples of stem rust, 30 samples of yellow rust, and 3 rust samples from Berberis aetnensis were sent to GRRC. Preliminary results of yellow rust genotyping and race phenotyping showed prevalence of race Triticale2015. Warrior(-) and a new race (Pst'New'- First detected in 2016) were also detected. For stem rust, TTTTF and TTRTF were detected in Sicily and mainland Italy and TKTTF was identified in Sardinia. Susceptibility of major commercial durum cultivars and breeding lines suggests the need for both durable resistance breeding and systematic surveys coupled to an early warning system.


Linkage Mapping of Stem Rust Resistance Gene(s) in Spring Wheat Line CI14275

BGRI 2018 Poster Abstract
Zennah Kosgey University of Minnesota, St. Paul, MN 55108, U.S.A
Ruth Dill-Macky, Ruth Wanyera, Sridhar Bhavani, Worku Bulbula, Matthew Rouse

Stem rust caused by Puccinia graminis f.sp. tritici (Pgt) is one of the major constraints to wheat (Triticum aestivum) production worldwide. Pgt races have rapidly evolved in several geographical regions due to the deployment of single resistance genes resulting in boom and bust cycles, hence combinations of resistance genes through pyramiding ensures durability of resistance in wheat varieties. Spring wheat line CI14275 displayed high levels of field resistance to stem rust in Kenya and USA compared to the parents in its pedigree (Thatcher, Kenya Farmer & Lee). To understand the genetics of resistance in CI14275, 114 Recombinant Inbred lines (RILs) were developed from the cross CI14275/LMPG-6 and screened for seedling response to Pgt races TTTTF, TPMKC, TRTTF, TTKSK & RTQQC. Chi-square goodness of fit tests suggested one-gene, three-genes, and four-genes segregated for response to races TTTTF, TPMKC and RTQQC, respectively. The RILs were all susceptible to races TTKSK and TRTTF. CI14275 showed intermediate low infection types only against races TPMKC (23-) and TTTTF (1+3C). Field screening of the population was completed in Kenya, Ethiopia and St. Paul where CI14275 showed high levels of resistance TMR (Kenya), 5MS (Ethiopia) and 5RMR (St. Paul) against the prevalent races in the stem rust screening platforms. LMPG-6 displayed susceptible responses ranging from 70S-90S in the three locations. 90K wheat Single Nucleotide Polymorphism (SNP) marker platform will be used to genotype parents and the population.


Sowing seeds of prosperity

BGRI 2018 Poster Abstract
Kanan Vijayaraghavan Sathguru Management Consultants
Venugopal Chintada, Vijay Paranjape, Mansi Naithani, Aishwarya Vardhan

Nepal is an important wheat producer country in the South Asian region; with wheat being the third most important crop in the country after paddy (rice) and maize. Additionally, high-quality, disease free, processed seed is vital to establishing food security in South Asia. The Agriculture and Forestry University or AFU, located in the fertile Chitwan region of Nepal, is the only agriculture university catering to the needs of the Terai region and has the capability to provide innovative wheat seed solutions for small wheat-growing farmers. In the Delivering Genetic Gain Project or DGGW, the AFU has an active involvement in seed production, processing, and distribution. These activities play a major role in human capacity building in the country involving women empowerment, whole family participation in varietal selection and entrepreneurship for sustainable livelihood and overall development. Currently, under the DGGW?s Innovative Seed System in Nepal, AFU produces and aggregates seeds from farmers in the area and process it through a new seed processing unit, which is a cost-efficient version of machines commonly seen in larger agricultural facilities. At full capacity, the unit can operate up to 18 hours a day and process one ton of seed per hour. The unit it is also capable of processing rice and maize during other cropping seasons. By March 2017, more than 200 farmers applied to be part of the inaugural cohort of farmers trained in producing disease free wheat seed. The inaugural wheat season for the Seed Systems for Nepal Initiative has concluded successfully, with a total of 14 metric tons of disease-free wheat seed processed. The DGGW Seeds Systems for Nepal Initiative envisions to increase the number of empowered farmers next season, which commences on November, 2017.


Response of durum wheat genotypes to rust in preliminary and regular yield trials

BGRI 2018 Poster Abstract
Iqra Ghafoor Wheat Research Institute, Ayub Agricultural Rsearch Institute Faisalabad
Amna Kanwal, Mehwish Makhdoom, Javed Ahmed, Makhdoom Hussain

Wheat is the most important cereal crop in Pakistan because it contributes major portions of daily calorie intake. Rust is an increasing threat to wheat production and ultimately food security in Asian countries. The purpose of the present study is to identify the suitable wheat lines that could significantly resist rust pathogen without compromising yield. 60 durum wheat lines, entered in preliminary and regular yield trials, were tested for various morphological and physiological traits along with adult plant disease reaction under natural rust infestation. Results indicated that there was higher incidence of yellow rust as compared to leaf rust as ten genotypes were susceptible to leaf rust. Whereas seven lines were moderately susceptible, 14 were moderately resistant and two were completely susceptible to yellow rust. These findings suggested that future breeding program should be directed towards the developments of resistant cultivars that could resist variable strains of rust pathogen under changing climatic conditions.


Preliminary results on stem rust disease in a winter wheat landrace population from Central and Western Asia

BGRI 2018 Poster Abstract
Kadir Akan Ahi Evran University, Agriculture Faculty, Plant Protection Department K?rsehir/Turkey
Nilofer Akci, Marta da Silva Lopes

Stem rust (Puccinia graminis f. sp. tritici) is a fungal disease that can significantly reduce wheat yields and quality. The goal of this study was to screen 281 winter bread wheat landraces genotypes for their reaction to stem rust disease in seedling and adult plant stage.
For seedling stage, the experiment was carried out under greenhouse conditions in Field Crops Central Research Institute in Ankara, Turkey during 2017 growing season. The genotypes were grown at 20?4?C under greenhouse condition and inoculated (avirulent on Sr24, 26, 27, and 31 resistance genes) with urediniospores in mineral oil suspension at Zadoks growth stage 11 or 12. After inoculation, the genotypes were incubated at 20?1?C with 100% humidity during 24 hours then at 18-25?C. Scoring took place after 14 days using a 0-4 scale. Infection types on the susceptible checks (cv. Gun-91 and Thatcher) were 3+ scores. For adult plant reactions, the genotypes were screened under natural epidemic conditions for Pgt (virulent on Sr5, 6, 7b, 8a, 8b, 9b, 9g, 10, 30, Tmp and Mcn resistance genes) in Seydiler-Kastamonu, Turkey. The materials were sown in a one-meter row with three replications. Stem rust development on each entry was scored using the modified Cobb scale (Little Club had reached 80-100S) in August 2017. Coefficients of infections were calculated and values below 20 were considered to be resistant.
Two (1%) (Seedling stage) genotypes and 15 (5%) (Adult stage) genotypes were resistant to Pgt. The resistance genotypes identified in this study can be used in breeding programs. SNP markers will be identified for stem rusts resistance identified in the landrace population.


Global stem rust phenotyping network for wheat improvement

BGRI 2018 Poster Abstract
Sridhar Bhavani CIMMYT
Ruth Wanyera, Godwin Macharia, Ravi Singh, Ayele Babebo, Girma Bedada

An effective partnership between CIMMYT, KALRO, EIAR and Delivering Genetic Gains in Wheat (DGGW) project on global stem rust phenotyping has made a significant progress and impact on the Global wheat community in addressing the threat of Ug99 race group and other important stem rust races in the region. International stem rust phenotyping networks play a key role in evaluating global wheat germplasm from many countries and institutions: identifying new sources of resistance, pre-breeding, CIMMYT-Kenya shuttle breeding, pathogen survey and surveillance, varietal release and genomic selection. About 600,000 lines have been screened against Pgt race Ug99 and derivatives since 2005, and the screening capacity at KALRO has increased to 50,000 lines each year from over 20-25 countries and research institutions each year. The results from international nurseries show a shift to higher frequencies of lines with resistance to race Ug99 since the screening activities were initiated in 2008.
KALRO and EIAR and several national programs have a dynamic and successful breeding programs that benefit from collaboration, testing, and release of materials coming out of the CIMMYT breeding program. The release of over 15 varieties in Kenya as well as in Ethiopia and more than 90 varieties released in several countries globally over the years is a testament to the success of the program. with spillover effects of varieties released in Burundi, Rwanda, and Uganda.
CIMMYT-Kenya shuttle breeding has resulted in rapid recycling of over 2000 breeding populations each year between Mexico and Kenya to evaluate and select lines in early generations against virulent stem rust races in Kenya to ensure lines have adequate levels of resistance are advanced not only in early generations of breeding cycle but also materials in the yield trails (10,000 annually) that are later constituted as international nurseries and distributed to National programs and partners.


Potential of conservation agriculture for cereal-based sustainable farming systems and scaling up in eastern Indo-Gangetic plains

BGRI 2018 Poster Abstract
Resona Simkhada Nepal Agriculture Research Council, Nepal
Dipendra Pokharel, Thakur Prasad Tiwari, Mahesh Gathala, Hari Krishna Shrestha

Conservation agricultural practices have been found to be climate and labor smart, and sustainable, agricultural production technologies. The decline in productivity, increase in the cost of cultivation, labor intensive practice affected the cereal based farming system in Nepal particularly at the Indo-Gangetic plains. SRFSI has been working in response to concerns about the sustainability of the cereal based farming system at Sunsari and Dhanusha district of Nepal. This study was conducted to assess the adoption and scaling up of conservation agriculture in addition to input usage, production, net profit, B:C ratio, labour use, etc. of CA practice in Sunsari district, eastern Indo-Gangetic plains of Nepal. The study employed structured questionnaires survey and key informant survey as the main data collection tools. Project reports were taken as secondary data. The primary data related for the semi-annual report and annual report of the SRFSI project were collected jointly by the DADO, Sunsari and RARST, Tarahara. Study revealed that farmers had several tangible advantages and getting higher productivity through these practices. This study assessed the potential of CA based practices in Rice-Wheat and Rice-Maize farming system to improve the yields, net profit for sustainability of the cereal based farming system.